1. Exercises from 3.3

Today we are going to work with surface paramaterizations as preparation for doing integration over surfaces.

Problem 1. Folland 3.3.1(b)

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $f(u, v)=(a u \cos v, b u \sin v, u)$ for $a, b>0$.

- What happens if we fix $u=C$? Then the image of the map is curve (an ellipse) in \mathbb{R}^{3} whose center is on the z-axis at a height $z=C$

$$
f(C, v)=(C a \cos v, C b \sin v, C)
$$

- If we fix $v=C$, then the image of the map is a line through the origin whose direction vector is $(a \cos C, b \sin C, 1)$
- These two facts together let us draw a sketch of the surface (actually draw the surface)
- Now let's write $f(u, v)=(x(u, v), y(u, v), z(u, v))$ and establish a functional relation $F(x, y, z)=$ 0 . (The trick is to exploit the trigonometric identity $\sin ^{2} v+\cos ^{2} v=1$)
- $x(u, v)^{2}+y(u, v)^{2}=u^{2}\left(a^{2} \cos ^{2} v+b^{2} \sin ^{2} v\right)$, does not quite give us what we want
- $(b x)^{2}+(a y)^{2}=a^{2} b^{2} u^{2}=(a b z)^{2}$, so the functional relation describing the surface is

$$
F(x, y, z)=b^{2} x^{2}+a^{2} y^{2}-a^{2} b^{2} z^{2}=0
$$

- Now let's find the points where $\partial_{u} f$ and $\partial_{v} f$ are linearly independent. Our expectation from looking at our sketch is that the tangents to the surface will be linearly independent everywhere except the origin

$$
\left.\left.\begin{array}{c}
\partial_{u} f=(a \cos v, b \sin v, 1) \\
\partial_{v} f=(-a u \sin v, b u \cos v, 0) \\
\hat{i} \\
\hat{j}
\end{array} \hat{k} \right\rvert\,=(-b u \cos v,-a u \sin v, a b u)\right)
$$

- Exercise: Show that the above determinant is proportional to ∇F. Explain geometrically why this is exactly what you would expect.
- The coordinate vector fields are linearly dependent at the origin, which agrees with our sketch showing a singularity at the origin

Problem 2. Folland 3.3.2(a)

- We need to find the coordinate tangent vectors at the surface at the point $(1,-2,1)$, then take their cross product. The first step is to find which values of (u, v) give $f(u, v)=(1,-2,1)$.
- $x=1=\exp (u-v) \Rightarrow u=v$
- $y=-2=u-3 v=-2 u \Rightarrow u=v=1$
- Checking for consistency, $z=1=\frac{1}{2}\left(u^{2}+v^{2}\right)=1$.
- So we need to find the coordinate tangent vectors at the point $(u, v)=(1,1)$.

$$
\begin{gathered}
\left.\partial_{u} x(u, v)\right|_{(1,1)}=\left.e^{u-v}\right|_{(1,1)}=1 \\
\left.\partial_{u} y(u, v)\right|_{(1,1)}=1 \\
\left.\partial_{u} z(u, v)\right|_{(1,1)}=\left.u\right|_{(1,1)}=1 \\
\left.\partial_{v} x(u, v)\right|_{(1,1)}=-\left.e^{u-v}\right|_{(1,1)}=-1 \\
\left.\partial_{v} y(u, v)\right|_{(1,1)}=-3
\end{gathered}
$$

$$
\left.\partial_{v} z(u, v)\right|_{(1,1)}=\left.v\right|_{(1,1)}=1
$$

- So our two coordinate tangent vectors at the point $(u, v)=(1,1)$ are:

$$
\left.\partial_{u} f\right|_{(1,1)}=\left.\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) \partial_{v} f\right|_{(1,1)}=\left(\begin{array}{c}
-1 \\
-3 \\
1
\end{array}\right)
$$

- We can find the equation of the tangent plane by finding the normal vector and using the fact that we have a point $(1,-2,1)$ on the plane:

$$
\begin{gathered}
\vec{c}=\left.\partial_{u} f\right|_{(1,1)} \times\left.\partial_{v} f\right|_{(1,1)}=\left(\begin{array}{c}
4 \\
-2 \\
-2
\end{array}\right) \\
4 x-2 y-2 z=D \Rightarrow 4(1)-2(-2)-2(1)=6=D
\end{gathered}
$$

So the equation of the tangent plane is:

$$
4 x-2 y-2 z=6
$$

Problem 3. (Folland 3.3.5(a)) Let S be the circle formed by intersecting the plane $x+z=1$ with the sphere $x^{2}+y^{2}+z^{2}=1$. Find a parametrization of the curve.

- Draw picture
- The problem is much easier to solve in a coordinate system where we rotate first by $\pi / 4$ around the y-axis. Define a new set of coordinates $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ such that:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0 \\
-1 / \sqrt{2} & 0 & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)
$$

- Nothing happens to the sphere when we rotate, but the plane $x+z=1$ becomes the plane:

$$
\frac{1}{\sqrt{2}}\left(x^{\prime}+z^{\prime}\right)+\frac{1}{\sqrt{2}}\left(-x^{\prime}+z^{\prime}\right)=\sqrt{2} z^{\prime}=1 \Rightarrow z^{\prime}=\frac{1}{\sqrt{2}}
$$

- So we now want to parameterize the intersection of the plane $z^{\prime}=1 / \sqrt{2}$ with the sphere $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}=1$.
- Switching the spherical polar coordinates, we can see that any curve living in a plane of constant z^{\prime} must have θ constant, and since $z^{\prime}=\cos \theta=1 / \sqrt{2}$ we must have $\theta=\pi / 4$.
- We can also see that $\phi \in[0,2 \pi]$, so simply let $\phi=t$.
- In polar coordinates, the equation of the curve is $(r, \phi, \theta)=(1, t, \pi / 4)$, which we can easily convert to coordinates on \mathbb{R}^{3} :

$$
\gamma(t)=\left(\begin{array}{c}
r(t) \cos \phi(t) \sin \theta(t) \\
r(t) \sin \phi(t) \sin \theta(t) \\
r(t) \cos \theta(t)
\end{array}\right)=\left(\begin{array}{c}
\frac{\cos t}{\sqrt{2}} \\
\frac{\sin t}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right)
$$

- Now we rotate back to our original coordinate system:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0 \\
-1 / \sqrt{2} & 0 & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{c}
\frac{\cos t}{\sqrt{2}} \\
\frac{\sin t}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{c}
\frac{1+\cos t}{2} \\
\frac{\sin t}{\sqrt{2}} \\
\frac{1-\cos t}{2}
\end{array}\right)=\left(\begin{array}{c}
\cos ^{2}(t / 2) \\
\sin t / \sqrt{2} \\
\sin ^{2}(t / 2)
\end{array}\right)
$$

- In retrospect, we could have just noticed from the beginning that $x+z=1$ naturally lends itselft to a parameterization such as $x(t)=\cos ^{2}(t)$ and $z(t)=\sin ^{2}(t)$.

