1. Exercises from 3.3

Today we are going to work with surface paramaterizations as preparation for doing integration over
surfaces.

PROBLEM 1. Folland 8.3.1(b)

Let f:R? — R3 be given by f(u,v) = (aucosv,businv,u) for a,b > 0.
e What happens if we fix u = C? Then the image of the map is curve (an ellipse) in R? whose

center is on the z-axis at a height z = C
f(C,v) = (Cacosv,Chsinv, C)

o If we fix v = C, then the image of the map is a line through the origin whose direction vector
is (acosC,bsinC, 1)

e These two facts together let us draw a sketch of the surface (actually draw the surface)

o Now let’s write f(u,v) = (z(u,v), y(u,v), z(u,v)) and establish a functional relation F(x,y, z) =
0. (The trick is to exploit the trigonometric identity sin® v + cos? v = 1)

o z(u,v)? + y(u,v)? = u?(a? cos® v 4 b?sin? v), does not quite give us what we want

o (bx)? + (ay)? = a?b*u? = (abz)?, so the functional relation describing the surface is
F(z,y,2) = b®2% + a®y? — a®b*22 = 0

e Now let’s find the points where 9, f and 0, f are linearly independent. Our expectation from
looking at our sketch is that the tangents to the surface will be linearly independent everywhere
except the origin

Ouf = (acosv,bsinv, 1)

Oy f = (—ausinv, bu cos v, 0)
i J k
acosv bsinv 1 | = (—bucosv,—ausinv,abu)
—ausinv bucosv 0
e Exercise: Show that the above determinant is proportional to VF. Explain geometrically
why this is exactly what you would expect.
e The coordinate vector fields are linearly dependent at the origin, which agrees with our sketch

showing a singularity at the origin
PROBLEM 2. Folland 8.3.2(a)

e We need to find the coordinate tangent vectors at the surface at the point (1, —2,1), then take
their cross product. The first step is to find which values of (u,v) give f(u,v) = (1,-2,1).
er=1=explu—v)=>u=v

o y=-"2=uy—3v=-2u=u=v=1

Checking for consistency, z = 1 = 1 (u? +v%) = 1.

So we need to find the coordinate tangent vectors at the point (u,v) = (1,1).
Ouz(u,v)|(1,1) =" a1y =1

8uy(u7v)‘(1,1) =1
Ouz(u,v)|(1,1) = ul1,1) =1
Y

Oy (u,v)|1,1) = —€" 1,1y = —1

aq)y(u7 U)|(1,1) =-3

1



0vz(u,v)|(1,1) = v[1,1) =1
e So our two coordinate tangent vectors at the point (u,v) = (1, 1) are:
-1

= -3

= 1 avf

(1,1

ouf

e We can find the equation of the tangent plane by finding the normal vector and using the fact

that we have a point (1,—2,1) on the plane:

e=0.f| xouf| = -2

wn o\

(1,1)

4o —2y—22=D=4(1)—2(-2)-2(1)=6=D
So the equation of the tangent plane is:
dr —2y—22=6

PROBLEM 3. (Folland 3.3.5(a)) Let S be the circle formed by intersecting the plane x + z = 1 with

the sphere x2 + y? + 22 = 1. Find a parametrization of the curve.

e Draw picture
e The problem is much easier to solve in a coordinate system where we rotate first by 7 /4 around

the y-axis. Define a new set of coordinates (2’3, 2’) such that:

T 1/vV2 0 1/v2 !
= 0 1 0 Y/
-1/vV2 0 1/V2 2!

e Nothing happens to the sphere when we rotate, but the plane x + z = 1 becomes the plane:

Lo, ’ 1 ’ / / ! L
(@ )+ (- +)=V2% =1 = —
\/5( ) \/5( ) V2

e So we now want to parameterize the intersection of the plane 2/ = 1/v/2 with the sphere
(@')? + ()2 + ()2 = 1.

e Switching the spherical polar coordinates, we can see that any curve living in a plane of constant
2’ must have # constant, and since 2z’ = cos = 1/v/2 we must have § = 7 /4.

e We can also see that ¢ € [0, 27], so simply let ¢ = t.

e In polar coordinates, the equation of the curve is (r,¢,0) = (1,t,7/4), which we can easily

convert to coordinates on R3:

7(t) cos ¢(t) sin O(t) C\%t
()= | r()sing(t)sind(t) | =| =i
r(t) cos 6(¢) %
e Now we rotate back to our original coordinate system:
x 1/vV2 0 1/V2 C\O/%t Lrcost cos?(t/2)
y | = 0 1 0 | = t = | sint/v2
z —1/vV2 0 1/V2 % 1-cost sin?(t/2)

e In retrospect, we could have just noticed from the beginning that z + z = 1 naturally lends

itselft to a parameterization such as 2(t) = cos?(t) and z(t) = sin®(t).



